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Abstract. Let G be a discrete group, and let N be a normal subgroup of G.
Then the quotient map G → G/N induces a group algebra homomorphism
TN : `1(G) → `1(G/N). It is shown that the kernel of this map may be
decomposed as ker(TN ) = R + L, where R is a closed right ideal with a
bounded left approximate identity and L is a closed left ideal with a bounded
right approximate identity. It follows from this fact that, if I is a closed two-
sided ideal in `1(G), then TN (I) is closed in `1(G/N). This answers a question
of Reiter.

The main result of this paper is an extension of a theorem from [W1]. As is
explained below, that theorem may be regarded as a non-commutative Choquet-
Deny theorem. The extension has implications for the structure of group algebras
and, in particular, answers a question of Reiter [Re1], 8.4.6. This paper is essentially
the one announced in the notes added in proof to [W1], although it is not exactly
what was intended then.

Throughout, G will denote a locally compact group and L1(G) and M(G) the
usual group and measure algebras with convolution product. The Haar measure
on G will be denoted by m; µ will denote an arbitrary probability measure on G.
A probability measure which is absolutely continuous with respect to m is said to
be non-degenerate if the smallest closed subsemigroup supporting µ is G itself. We
shall identify L1(G) with the ideal in M(G) consisting of all measures which are
absolutely continuous with respect to m, so that µ ∗ f and f ∗ µ are well-defined
whenever f belongs to L1(G); see [H-R], Definition (20.5).

Let µ be a probability measure. Define

µJ = {µ ∗ f − f : f ∈ L1(G)}−, Jµ = {f ∗ µ − f : f ∈ L1(G)}−

and

L1
0(G) =

{

f ∈ L1(G) :

∫

G

f dm = 0

}

.

Then L1
0(G) is a two-sided ideal. Also, µJ is a right ideal with a bounded left

approximate identity, Jµ is a left ideal with a bounded right approximate identity
and both of these ideals are contained in L1

0(G).
The Choquet-Deny theorem asserts that, if G is abelian and if G itself is the

smallest closed subgroup supporting µ, then L1
0(G) = Jµ; see [C-D]. Of course, since
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112 G. A. WILLIS

G is abelian, µJ = Jµ in this case. It cannot be true in general that L1
0(G) = Jµ

because Jµ has a bounded right approximate identity but L1
0(G) does not have a

bounded right approximate identity unless G is amenable; see [Re2]. In [W1], the
following non-commutative version of the Choquet-Deny theorem is proved:

Theorem 1. Let µ be a non-degenerate probability measure on G. Then

L1
0(G) = µJ + Jµ.

(A new and clearer proof of this theorem is sketched below.)
The present paper concerns relativisations of Theorem 1, in the sense defined

in [Re1]. Let N be a closed, normal subgroup of G and denote by TN : L1(G) →
L1(G/N) the group algebra homomorphism induced by the quotient map G →
G/N . Note that, if N = G, then ker(TN ) = L1

0(G). Also, when µ is supported in
N , Jµ and µJ are contained in ker(TN ).

We can therefore hope to relativise Theorem 1 by proving, for each normal
subgroup N , any of the following, successively weaker, statements:

(1) for each pair, µ1 and µ2, of non-degenerate probability measures on N ,

ker(TN ) = µ1
J + Jµ2

;

(2) for each non-degenerate probability measure, µ, on N ,

ker(TN ) = µJ + Jµ;

(3) there is a probability measure, µ, on N such that

ker(TN) = µJ + Jµ; and

(4) there are probability measures, µ1 and µ2, on N such that

ker(TN ) = µ1
J + Jµ2

.

Of these statements, (2) would be the most direct generalization of Theorem
1. However, (2) would follow once (1) could be proved in the case N = G. As
is discussed in [W1], the relativisation of Theorem 1 is relevant to some factoring
problems in certain ideals in L1(G). Indeed, if (4) holds, then ker(TN ) is the sum
of a closed, right ideal with a bounded left approximate identity and a closed, left
ideal with a bounded right approximate identity.

In [K], V. A. Kaimanovich studied the condition

L1
0(G) = µ1

J + Jµ2
,

where µ1 and µ2 are probability measures on G. If this condition is satisfied, he calls
the pair (µ1, µ2) of probability measures a Liouville pair. In response to a question
of the author, he shows that there are non-degenerate probability measures, µ1

and µ2, on free groups such that (µ1, µ2) is not a Liouville pair; see Corollary 2 to
Theorem 6 in [K]. Thus (1) is false even in the case when N = G. These examples
may be used to show that (2) is false also. It is possible that similar methods will
show that (3) too is false. However, it is shown in this paper that (4) is true in
great generality, in particular in the case when G is discrete. The proof relies on
some results from [W1].
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EXTENSION OF A NON-COMMUTATIVE CHOQUET-DENY THEOREM 113

Some lemmas

The first result required is Theorem 3.8 from [W1]. (There is a misprint in the
statement there, the subscript 0 is missing from L1

0(G).)

Theorem 1. Let µ be a non-degenerate probability measure on G. Then

L1
0(G) = µJ + Jµ.

A sketch of a new proof of this theorem follows. It is shorter and clearer than
that in [W1]. It also avoids some technical details which are given in [W1] but are
not important in the present context. Another proof of this theorem has been given
in [K].

Sketch of proof. The result does not require G to be a group, merely a semigroup.
In fact it suffices to prove the result for ‘measured free semigroups’ and then to
pass to the general (semi)group case by quotienting.

Let (X, µ) be a probability space, and let L1(X, µ) be the usual Lebesgue space.
For each positive integer n let Ln be the space L1(Xn, µn). Let A be the Banach
space A = (

⊕

∞

n=0 Ln)`1 and denote elements of A by f = (f0, f1, f2, f3, . . . ), where
fn belongs to Ln. (When n = 0 put Ln = C.) Then the maps from Lm × Ln →
Lm+n : (fm, gn) 7→ fm ⊗ gn (m, n = 0, 1, 2, 3, . . . ) extend in a unique way to a
Banach algebra product on A. This algebra is the L1-algebra of the ‘measured
free semigroup with unit’ generated by (X, µ). Define a map φ : A → C by
φ(f) =

∑

∞

n=0(
∫

Xn fndµn). Then φ is a multiplicative linear functional and so
A0 = ker(φ) is a closed, two-sided, codimension one ideal in A.

Put u = (0, 1X , 0, 0, . . . ), where 1X is the constant function with value 1 and
define J = {f − fu : f ∈ A}−. Then J is a closed, left ideal in A with a bounded
right approximate identity. Since φ(u) = 1, J is contained in A0. A key step in
the proof is to show that the quotient module A/J is isometrically isomorphic to
L1(X∞, µ∞). The isomorphism is also an isomorphism of left A-modules when the
A-module action on L1(X∞, µ∞) is defined, for fm in Lm and F in L1(X∞, µ∞),
by

(fm.F )(x1, x2, x3, . . . ) = fm(x1, x2, . . . , xm)F (xm+1, xm+2, . . . ).

Now A0/J is mapped under the isomorphism to L1
0(X

∞, µ∞) and it may be
shown, by using the ergodic theorem for operators as in Theorem 3.8 from [W1],
that L1

0(X
∞, µ∞) = [(1−u).L1(X∞, µ∞)]−. Hence, by pulling back to A, we have

that

A0 = K + J,

where K = {f − uf ∈ A}−. This completes the proof for the semigroup algebra A.

The result for group algebras may now be deduced. Since µ is non-degenerate,
it may be supposed that it is equivalent to the Haar measure on G—replace µ by
a convex combination of its powers if necessary. If G is discrete, there is a natural
Banach algebra homomorphism from A to L1(G) such that u is mapped to µ. This
homomorphism is surjective, maps A0 to L1

0(G), K to µJ and J to Jµ. The result
follows in this case. For G non-discrete, the range of the natural Banach algebra
homomorphism is L1(G) with unit adjoined and a further approximate identity
argument is needed to reach the desired conclusion.

The second result required is Lemma 1.1 from [W1]. Although the statement
given here is more general than that given in [W1], the proof is identical.
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Theorem 2. Let X be a Banach space, let F be a norm-closed, convex semigroup

of contraction operators on X, and let Y be a separable subspace of X such that :

(i) (I − T )X ⊂ Y for every T in F ; and

(ii) for each ε > 0 and each y in Y there is T in F with ‖Ty‖ < ε.

Then there is T in F such that Y = [(I − T )X ]−.

This theorem may be thought of as being a variant of Cohen’s factorisation
theorem. It says that, if Y can be approximated from below by subspaces of the
form [(I − T )X ]−, then Y itself has this form.

The relative Choquet-Deny theorem

We are now ready to prove a relative version of Theorem 1.

Theorem 3. Let G be a countable, discrete group, let N be a normal subgroup

of G, and let µ be a non-degenerate probability measure on N . Then there is a

probability measure µ̂ on N such that

ker(TN ) = µ̂J + Jµ.

Proof. Put X = L1(G)/Jµ and Y = ker(TN)/Jµ. Since G is countable, X is a
separable space. For each probability measure ν on N , let Tν be the operator on X
induced by the convolution operator f 7→ ν ∗ f on L1(G). Since ν is supported on
N , (I−Tν)X ⊂ Y . Also, F = {Tν : ν a probability measure on N} is a norm closed,
convex semigroup of operators on X . Hence all of the conditions for Theorem 2 are
satisfied except perhaps for (ii).

To complete the proof it will suffice to show that (ii) is satisfied because then
Theorem 2 will imply that there is an operator Tµ̂ in F such that ker(TN)/Jµ =
[(I − Tµ̂)X ]−. Pulling back to L1(G) then yields

ker(TN ) = µ̂J + Jµ

as required.
Let f +Jµ be in Y . Since it suffices to check (ii) on a dense subspace of Y , it may

be supposed that f has finite support in G. Then f is supported on finitely many
cosets, x1N, x2N, . . . , xnN of N , and so we have that f =

∑n
k=1 xk ∗ fk, where fk

belongs to L1
0(N) for each k and, with an abuse of notation, xk denotes the point

mass at xk in G.
By replacing µ with a convex combination of its powers if necessary, it may be

supposed that supp(µ) = N . Then it follows from Theorem 1 that, for each g in
L1

0(N), ‖µmgµm‖ → 0 as m → ∞. In particular, given ε > 0, there is an m1 such
that ‖µm1f1µ

m1‖ < ε/n. Put ν1 = x1 ∗µm1 ∗x−1
1 . Then ‖ν1 ∗ (x1 ∗f1)∗µm1‖ < ε/n

and, since N is a normal subgroup, ν1 is supported on N . Next, x−1
2 ∗ ν1 ∗ x2 ∗ f2

belongs to L1
0(N) and so there is an m2 such that ‖µm2 ∗(x−1

2 ∗ν1 ∗x2 ∗f2)∗µm2‖ <

ε/n. Put ν2 = x2∗µ
m2∗x−1

2 ∗ν1. Then ‖ν2∗(x2∗f2)∗µ
m2‖ < ε/n and ν2 is supported

on N . Also, since x2 ∗µm2 ∗x−1
2 is a probability measure, ‖ν2 ∗ (x1 ∗f1)µ

m1‖ < ε/n.
Repeating this argument for each of the cosets x1N, x2N, . . . , xnN in turn, we find
integers m1, m2, . . . , mn such that, putting

ν = νn = (xn ∗ µmn ∗ x−1
n ) ∗ · · · ∗ (x2 ∗ µm2 ∗ x−1

2 ) ∗ (x1 ∗ µm1 ∗ x−1
1 ),

we have that ‖ν ∗ xk ∗ fk ∗ µmk‖ < ε/n for each k = 1, 2, . . . , n. It follows that
‖ν ∗ f + Jµ‖ < ε and so (ii) is satisfied.
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EXTENSION OF A NON-COMMUTATIVE CHOQUET-DENY THEOREM 115

A difficulty arises if it is attempted to extend the above proof to all locally
compact groups because it is no longer possible to reduce the norm of f coset by
coset.

One way to attempt to avoid this difficulty is to use structure theory for locally
compact groups. The next theorem deals with the connected case. For this, note
that each locally compact group, G, has a greatest amenable, normal subgroup N .
If G is also separable or compactly generated, then, by [W1], Proposition 5.5, there
are non-degenerate probability measures, µ, on G with ker(TN ) ⊂ Jµ.

Theorem 4. Let G be a connected locally compact group, and let N be its greatest

closed, normal, amenable subgroup. Let µ1 and µ2 be non-degenerate probability

measures on G such that ker(TN ) ⊂ Jµ1
and ker(TN ) ⊂ Jµ2

. Then

L1
0(G) = µ1

J + Jµ2
.

Proof. As shown in [M-Z], G has a compact, normal subgroup, K, such that G/K is
a Lie group. Since compact groups are amenable, it follows that G/N is a connected
Lie group. Since solvable groups are amenable, it follows that G/N is semisimple.
Hence we may suppose that G is a connected, semisimple, Lie group.

If µ is any non-degenerate probability measure on a connected, semisimple Lie
group, then L1(G)/Jµ is isomorphic to L1(B(T ), ν), where B(G) is the maximal
boundary defined by Furstenberg and ν is a quasi-invariant measure on B(G); see
[F], Theorem 5.3 and [W1], Section 2. Since G acts transitively on B(G), all
quasi-invariant measures on B(G) are equivalent. Hence the left L1(G)-modules
L1(G)/Jµ1

and L1(G)/Jµ2
are isomorphic.

Theorem 1 shows that the closure of (δe − µ1) ∗L1(G)/Jµ1
has codimension one

in L1(G)/Jµ1
. Since L1(G)/Jµ1

and L1(G)/Jµ2
are isomorphic L1(G)-modules, it

follows that the closure of (δe−µ1)∗L1(G)/Jµ2
has codimension one in L1(G)/Jµ2

.
The assertion of the theorem follows.

Corollary 1. Let G be a locally compact group, and let N be a connected, closed,

normal subgroup. Then there is a non-degenerate probability measure on N such

that

ker(TN ) = µJ + Jµ.

Proof. Let f be in ker(TN ). Then, for almost every x in G,
∫

N f(xy) dmN (y) = 0.

Hence, by the theorem,
∫

N
|(µn ∗ f ∗ µn)(xy)| dmN (y) → 0 as n → ∞ for almost

every x in G. Therefore

‖µn ∗ f ∗ µn‖1 =

∫

G

|(µn ∗ f ∗ µn)(x)| dmG(x)

=

∫

G/N

∫

N

|(µn ∗ f ∗ µn)(xy)| dmN (y) dmG/N (ẋ)

→ 0 as n → ∞

by the dominated convergence theorem.

The remaining difficulty with proving Theorem 3 for arbitrary locally compact
groups therefore is the totally disconnected case. This case can perhaps be dealt
with by using techniques from [W2].
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116 G. A. WILLIS

The structure of group algebras

The decomposition of ker(TN ) given in Theorem 3 answers some open questions
about the structure of group algebras. The first question concerns factoring in
various ideals in L1(G). It follows from Theorem 3 and the factorisation theorem
of Cohen that, if G is discrete and N is a normal subgroup of G, then each element
of ker(TN ) is a sum of two products. (Each element of `1(G) is supported on a
countable subgroup of G and so the theorem may be applied to arbitrary groups.)
A similar conclusion may be drawn about some other ideals.

Theorem 5. Let G be a discrete group, and let I be a closed ideal in `1(G) such

that `1(G)/I is finite dimensional and commutative. Then each element of I is a

sum of three products of elements of I.

Proof. Put N equal to the commutator subgroup of G. Then N is a normal sub-
group of G, `1(G)/ ker(TN) ' `1(G/N), which is commutative, and ker(TN ) ⊂ I. It
follows that I/ ker(TN ) is isomorphic to a finite codimensional ideal in the commuta-
tive group algebra `1(G/N) and hence that I/ ker(TN) has a bounded approximate
identity.

Let f be in I. Then, since I/ ker(TN ) has a bounded approximate identity, there
are g1 and g2 in I such that f − g1 ∗ g2 is in ker(TN ). It follows from Theorem 3
that there are ai and bi in ker(TN ) such that f −g1 ∗g2 = a1 ∗a2 +b1 ∗b2. Therefore
f is a sum of three products.

This last result improves the main theorem in [W3], where factorisation was
shown for finitely generated groups only and where the number of products de-
pended on the number of generators of G and the codimension of I.

It is possible to prove for non-discrete G also that any ideal in L1(G) which has
finite dimensional, commutative quotient factors. This can be done by using the
above result for discrete groups and techniques from [W4]. However, a better proof
would be one obtained by extending Theorem 3 to the non-discrete case.

Theorem 3 also provides an answer to a question of H. Reiter concerning closed,
left ideals in group algebras. He asks, in [Re1], 8.4.6: if I is a closed, left ideal in
L1(G) and N is a closed, normal subgroup of G, is the image of I in the quotient
algebra L1(G)/ ker(TN ) a closed ideal? (It is clear that this image is an ideal and so
the point of the question is whether it is closed.) This is equivalent to the question
as to whether the left ideal I + ker(TN ) is closed in L1(G).

In [Re1] Reiter showed that, in the case when N is an amenable group, I+ker(TN )
is closed. However, examples show that the answer to Reiter’s question, at least
in the generality in which it was asked, is ‘no’. Some examples given in [J] show
that it is necessary to suppose that N is amenable in order to obtain his result for
all left ideals. Furthermore in [Ri] it is shown that, if N is not amenable and has
infinite index in G, then there are closed subspaces of L1(G), invariant under left
translation by elements of N , whose image under TN is not closed. Here is another
example showing that amenability is necessary.

Example. Let F2 be the free group with generators a and b. Then the left ideal
`1(F2) ∗ (δe + δa + δb) is closed in `1(F2); see [W5], Corollary 2.5. Now let N
be the commutator subgroup of F2. Then `1(F2)/ ker(TN ) ' `1(F2/N) ' `1(Z2).
The image of `1(F2) ∗ (δe + δa + δb) in this commutative group algebra is a singly
generated ideal which is easily seen to be not closed.
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EXTENSION OF A NON-COMMUTATIVE CHOQUET-DENY THEOREM 117

If, however, I is not just a left ideal but is two-sided, then Reiter’s theorem does
extend to the case when N is not amenable.

Theorem 6. Let N be a normal subgroup in the discrete group G, and let I be a

two-sided ideal in `1(G). Then I + ker(TN) is a closed ideal in `1(G).

Proof. It suffices to show that, if {fn}
∞

n=1 is an absolutely summable sequence in
I + ker(TN ), then its sum,

∑

∞

n=1 fn, is also in I + ker(TN ).
For this, let µ1 and µ2 be probability measures such that

ker(TN ) = µ1
J + Jµ2

and suppose that fn = hn + kn, where hn is in I and kn in ker(TN ). Then for each

n there are probability measures λ
(n)
1 and λ

(n)
2 , convex combinations of powers of

µ1 and µ2 respectively, such that ‖λ
(n)
1 ∗ kn ∗ λ

(n)
2 ‖ < 2−n, so that the sequence

{λ
(n)
1 ∗ kn ∗ λ

(n)
2 }∞n=1 is absolutely summable. Since λ

(n)
1 and λ

(n)
2 are probability

measures, the sequence {λ
(n)
1 ∗ fn ∗ λ

(n)
2 }∞n=1 is also absolutely summable. Hence

the series
∑

∞

n=1 λ
(n)
1 ∗ hn ∗ λ

(n)
2 is absolutely convergent.

Let h =
∑

∞

n=1 λ
(n)
1 ∗hn∗λ

(n)
2 . Then, since I is a closed ideal, h belongs to I. The

sequence {fn − λ
(n)
1 ∗ hn ∗ λ

(n)
2 }∞n=1 is also absolutely summable and, furthermore,

fn − λ
(n)
1 ∗ hnλ

(n)
2 belongs to ker(TN ) for each n. Hence, since ker(TN ) is closed,

k =
∑

∞

n=1 fn − λ
(n)
1 ∗ hn ∗ λ

(n)
2 belongs to ker(TN ). Therefore

∑

∞

n=1 fn = h + k,
which is in I + ker(TN ).

The argument used to deduce Theorem 6 from Theorem 3 and that used by
Reiter are particular instances of a general theorem proved by Rudin; see [Ru],
Theorem 4.2. Of course, a version of Theorem 6 for non-discrete groups would hold
if Theorem 3 could be extended to cover the non-discrete case.
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